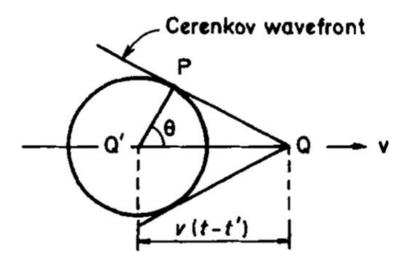

Brief history of Cherenkov rad.


- Discovered by Pavel Cherenkov 1934
- when studying fluorescence emission induced in uranyl salts (γ-ray in radioactive source)
- light was emitted even with solvent only
- Explained Ilya Frank & Igor Tamm 1937

Cherenkov radiation theory

What is Cherenkov Radiation (CR)

- emitted by a high energy charged particle
- with a velocity greater than the light speed in medium
- usually form a forward light cone
- occur when the condition is met:

A geometric proof of CR

(particle travel from t' to t)

- light path $Q'P = \frac{c}{n}(t t')$
- Particle path Q'Q = v(t t'),
- Emission angle $\cos \theta = \frac{Q'P}{Q'Q} = \frac{c}{vn} = \frac{1}{\beta n}$
- $|\cos\theta| <= 1 \rightarrow \beta n > 1$

ravel from t' to t)

path Q'P =
$$\frac{c}{n}(t - t')$$

cle path Q'Q = $v(t - t')$,
ssion angle $\cos \theta = \frac{Q'P}{Q'Q} = \frac{c}{vn} = \frac{1}{\beta n}$
 $\theta < 1 \rightarrow \beta n > 1$

CR field in EM theory

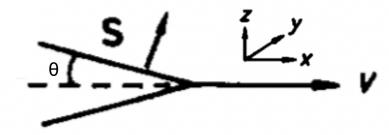
In vacuum: E-field at a field point (time t, charge q, uniform velocity v)

$$\mathbf{E} = \frac{q}{4\pi\varepsilon_0} \frac{\alpha \mathbf{R}}{s^3},$$

where R: radius vector from charge location at time t to the field point,

$$\alpha = \left(1 - \frac{v}{c}\right)^2$$
, $s = \left[\alpha R^2 + \frac{1}{c^2}(\mathbf{v} \cdot \mathbf{R})^2\right]^{\frac{1}{2}}$

• In medium (permittivity ε & refractive index n),


$$\alpha \Rightarrow \left(1 - \frac{vn}{c}\right)^2, \ s \Rightarrow \left[\alpha R^2 + \left(\frac{n}{c}\mathbf{v}\cdot\mathbf{R}\right)^2\right]^{\frac{1}{2}}$$

CR field in EM theory

$$s = \left[1 - \left(\frac{vn}{c}\right)^2 \sin^2 \varphi\right]^{\frac{1}{2}} R$$
, where φ is the angle between \mathbf{v} and \mathbf{R}

- If $v > \frac{c}{n}$, s =imaginary, except for region with $\sin \varphi \le \frac{c}{vn}$
- Field point must be to the rear of particle
- E-field exist only in a cone, with half angle $\varphi = \arcsin\left(\frac{c}{vn}\right)$, and vertex at the particle location at time t.
- Cone surface = surface of Cherenkov shock wave and contains the Cherenkov radiation field. ($E \rightarrow \infty$ on the surface)

CR field in EM theory

- A unit vector S: normal to the upper plane of light cone, and
- **S** // **k** ($|\mathbf{k}| = \frac{\omega}{c} n$) of the Cherenkov radiation. Then

$$k_{\chi} = \frac{\omega}{c} n \sin \theta = \frac{\omega}{c} n \left(\frac{c}{nv} \right) = \frac{\omega}{v}$$
, and

$$k_{yz} = \sqrt{\left(\frac{\omega}{c}n\right)^2 - \left(\frac{\omega}{v}\right)^2}$$

• If $v < \frac{c}{n}$, k_{yz} will become imaginary => The field will not exist

Threshold particle energy

• E(particle) = $\gamma m_0 c^2$

$$=\frac{1}{\sqrt{1-\beta^2}}\mathrm{m_0c^2}$$

$$>=\frac{n}{\sqrt{n^2-1}}\,\mathrm{m_0c^2}$$

For example, in water, Ethr ~ 264 keV

in air, Ethr ~ 38GeV

Cherenkov counter

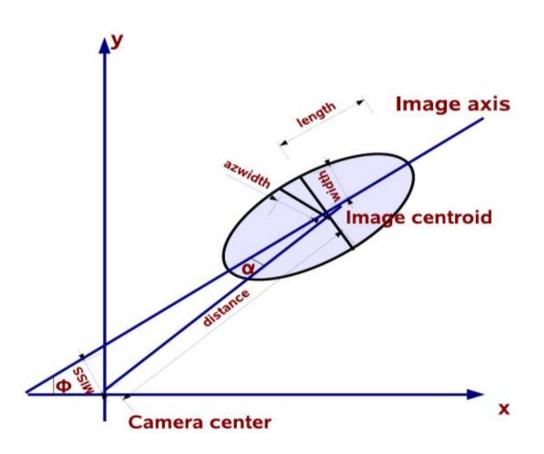
Cherenkov counter

Made by (fitting a long pipe of) medium with an optical system capable of

- detecting the emitted light
- measuring the angle of emission.

Usage:

- With known rest mass/type,
- Measurement of the Cherenkov angle => Measurement of the particle momentum/speed.
- Or vice versa



Working principles

- aims at γ-ray with 100GeV-20TeV
- use the atmosphere as the medium
- high-energy γ -ray interact and scatter \rightarrow produce a shower of charged particles with $v > c_{\text{air}}$
- Shower produces Cherenkov pool with r > 100m
- Mirrors on a telescope reflect CR towards a fast-camera (ns) and images are obtained
- light will be captured by sensors and turned into data for later analysis.

Hillas parameters

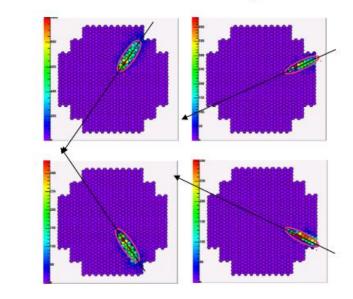
- Size: sum of photo-electrons
 (pe) of all PMT channel
- Distance: angular distance of centroid from telescope axis
- Alpha: angle between major axis and telescope axis
- useful in simulations,
 γ/hadrons segregation

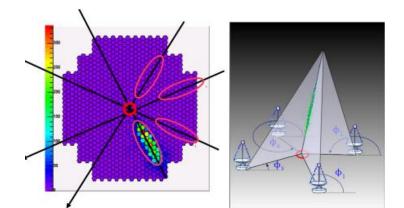
Computer simulation

tool: CORSIKA code

- tracks each particale produced in shower, not only γ-ray
- outputs particle type, energy, direction etc which can be used in further analysis and simulations

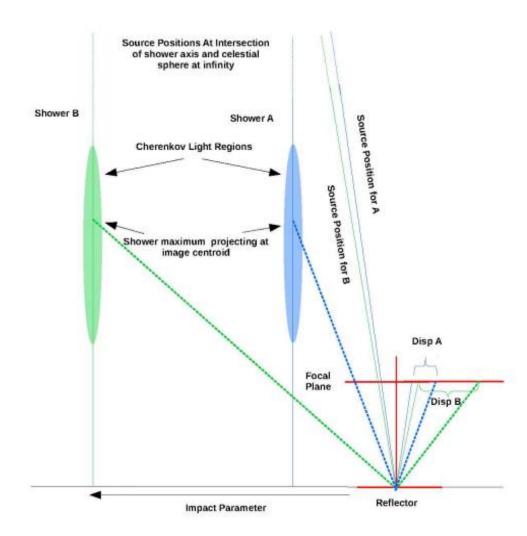
with add-on package,

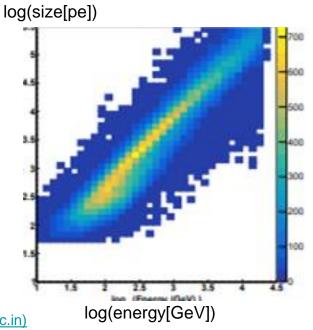

able to extract cherenkov photon data from shower data

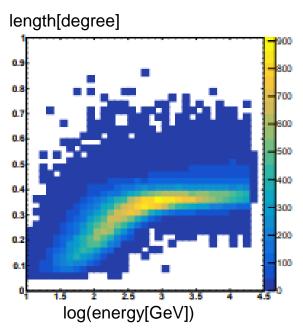

Primary γ-ray direction estimation

For multiple telescopes

- major axis is direction of primary
 γ-ray projecting onto camera plane
- so γ-ray source lies on major axe
- finding the intersection of major axes gives the source position on camera


For single telescope, Disp method is a way

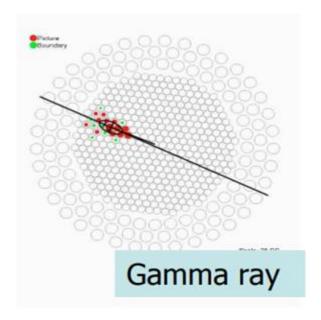

Disp method


- angular distance between source position and image centroid
- disp increases with impact parameter, same for elongation (width / length)
- disp-elongation correlation can be estimated by a computer model (RFM regression)

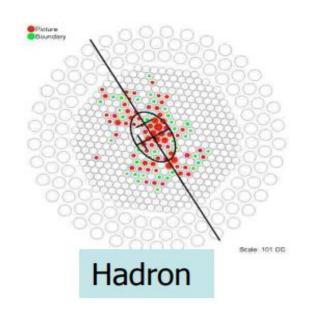
γ-ray energy estimation

- primary energy relates to Hillar parameters (size, length) => allow estimation
- can also be estimated by RFM regression

thesis.pdf (hbni.ac.in)


Night sky light contribution (LONS)

- raw image of shower contains pe induced by LONS photons which affects sensitivity of telescope
- Measure LONS spectum at nearby site
- To find the contribution of LONS on each pixel per unit time,

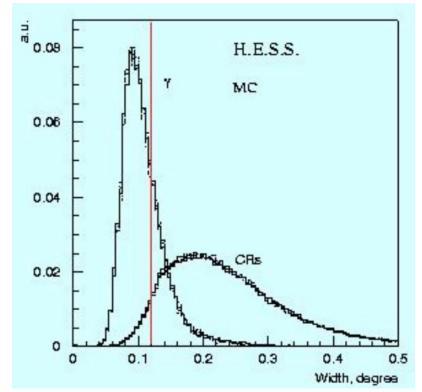

dN/dt (1 pixel) = ($\int dN/dt dA d\Omega/d\lambda \ d\lambda$) x $A\Omega$ (1 pixel)

angular size of 1 pixel angular size of 1 pixel total reflector area (1.46 pe per pixel in 5ns)

Rejection of background cosmic ray

Shorter in width & length

longer in width & length


Rejection of background cosmic ray

Method 1: static cut

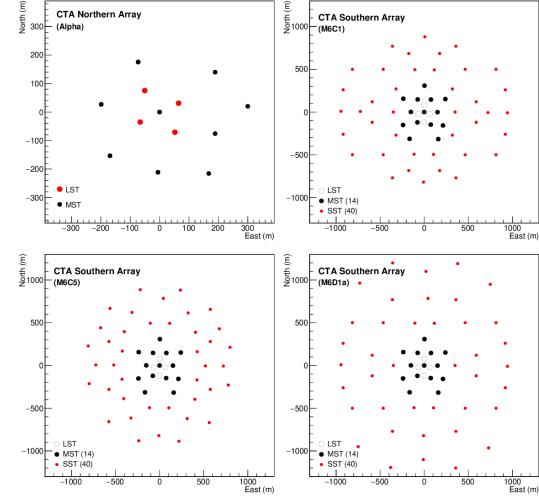
apply a simple on Hillas parameters

More efficient way: Machine learning

- Trained using data from simulations
- Hillas parameters as input
- Assign a hadronness score
 (likeliness of being a hardon event)
- A cut is applied to the hadronness

Static cut example

Locations of CTA

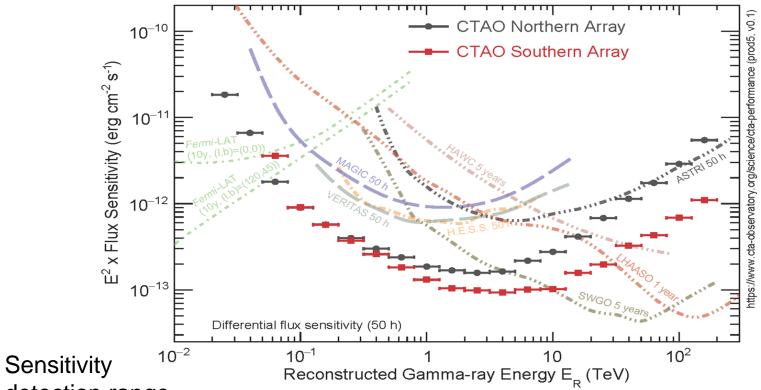


Types of telescopes

Large size telescopes: 20-100GeV

Medium size telescopes: 0.1-5TeV

Small size telescopes: 5-100TeV

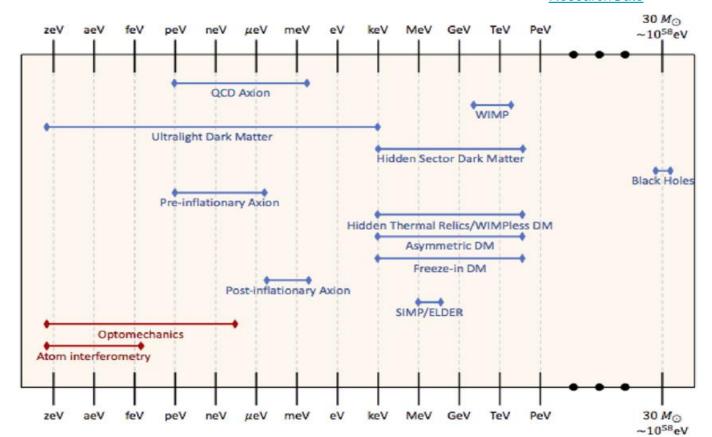


CTA Southern Array

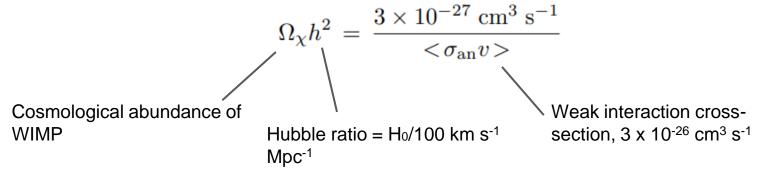
CTA Northern Array

CTA array arrangement

Comparison with CTA and other tools



detection range


Dark matter (DM) detection with CR

Dark matter candidates

(PDF) Quantum physics in space | ResearchGate

Why WIMP?

- $\Omega \chi \sim 0.2$, similar to $\Omega DM \sim 0.27$
- Main focus Neutralino (self-annihilated)

Dark matter annihilation

$$\frac{d\Phi_{\gamma}}{d\Omega\,dE_{\gamma}}(E_{\gamma},\psi) = \frac{1}{4\pi} \int_{\text{l.o.s}} d\ell(\psi) \rho_{\chi}^{2}(\mathbf{r}) \left(\frac{\langle \sigma v \rangle_{\text{ann}}}{2S_{\chi} m_{\chi}^{2}} \sum_{f} B_{f} \frac{dN_{\gamma}^{f}}{dE_{\gamma}} \right)$$

differential flux

astrophysic factor particle physics factor

where,

- σ = total cross section
- dN/dE is spectrum
- ρ is DM density
- $S_{\chi} = 1$ (self-annihilated) or 2 (else)

Good detection target

$$\frac{d\Phi_{\gamma}}{d\Omega dE_{\gamma}}(E_{\gamma}, \psi) = \frac{1}{4\pi} \int_{\text{l.o.s}} d\ell(\psi) \rho_{\chi}^{2}(\mathbf{r}) \left(\frac{\langle \sigma v \rangle_{\text{ann}}}{2S_{\chi} m_{\chi}^{2}} \sum_{f} B_{f} \frac{dN_{\gamma}^{f}}{dE_{\gamma}} \right)$$

To maximize γ flux, we need to look for:

- a close ($\propto d\Omega$),
- DM-dominated system ($\propto \rho^2$)
- => Galactic centre

Satellites

Galactic Center

Milky Way Halo

Isotropic contributions

Features in y-ray and

Galaxy Clusters

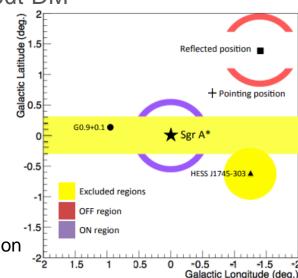
cosmic-ray spectra

Targets for DM detection (CTA)

FelliniWorskshop dimauro (infn.it

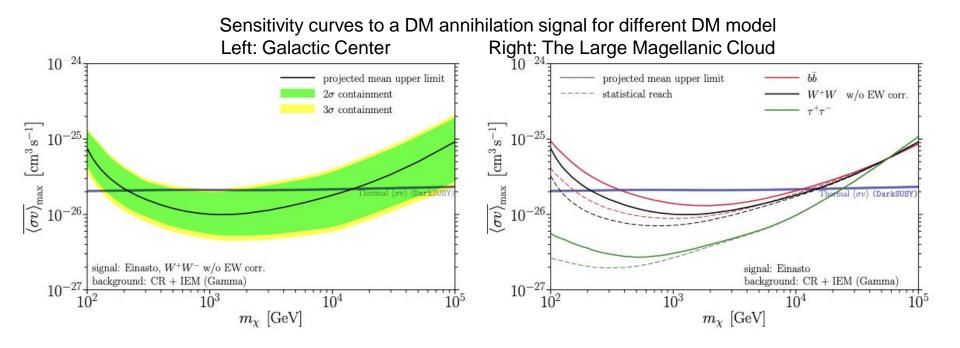
Dark Matter simulation: Pieri+ 2011PhRvD..83b3518P

Noise suppression


Major noise: Strong γ-ray background (almost isotropic) Solutions:

- Observe γ-ray background from other position that are believed without DM
- Build emission model to predict y-ray emission without DM

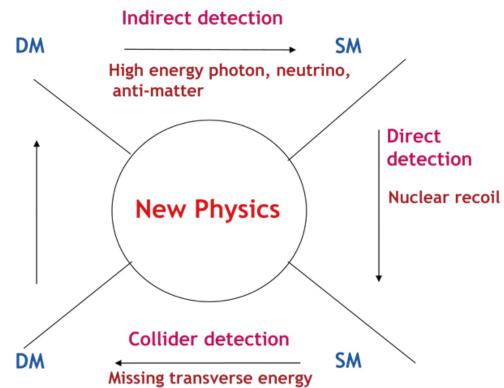
Also, when detecting galactic center,


 exclude areas around the galactic core, as γ-flux is too high.

(by massive stars, neutron stars etc.)

Galactic center detection region (HESS)

Sensitivity of CTA in DM detection


Comparison of other methods

Direct detection:

Signal for DM particle << noise, mostly builded underground

Collider detection:

High energy input, can be studied in detail

<u>Progress*----Bulletin of the Chinese</u> Academy of Sciences (cas.cn)

3 current categories in DM detection

Conclusion

Conclusion

- Occurs when charged velocity >> light speed in medium
- Can be detected by Cherenkov counter
- Useful in astrophysics (CTA, DM detection etc)

Thanks for listening and Q&A!